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ABSTRACT 
 

Superluminescent diodes (SLD) with a center wavelength of 1.2µm are of interest 

for use in medical imaging of skin tissue especially in the field of optical coherence 

tomography (OCT).  In this thesis a ridge-waveguide multi-section quantum dot SLD that 

emits at 1.2µm with a bandwidth greater than 100nm and a power greater than 0.2mW is 

presented.  The multi-section SLD allows simultaneous tuning of the ground state 

emission and excited state emission, resulting in wide bandwidth and high power. 

Theoretical equations describing the intensity output of the multi-section SLD 

configuration are presented. It is found that these equations are able to closely predict the 

measured SLD intensity as function of wavelength given measured gain and spontaneous 

emission spectra of the quantum dot active region. The gain and spontaneous emission 

data are derived from the improved segmented contact measurement technique that is 

especially compatible with the multi-section device approach and the stringent 

requirements on accuracy imposed by the low-gain quantum dot materials. Within the 
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theoretical model, various approaches to simulating the SLD spectra are also investigated 

and compared. 
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Chapter 1 - Introduction 

 

1.1 SLD Overview 

A superluminescent diode (SLD) is an edge-emitting optoelectronic device that is a 

hybrid of an LED and a semiconductor optical amplifier (SOA).  The overall purpose of 

the SLD is to provide a high power, broadband incoherent source with a Gaussian 

spectral output through the use of amplified spontaneous emission [1].  A secondary goal 

of the device is that the emitted light be easily coupled into a single-mode fiber.  The 

SLD has a broader bandwidth, usually expressed in terms of the full width at half 

maximum (FWHM) of the emitted power as a function of wavelength, than a laser diode 

(LD) and higher power than a typical light emitting diode (LED) as shown in Figure 1-1.   

However, like any hybrid device, there are some tradeoffs in the SLD that can best 

be described by comparing it to the LD and LED.  The light emission in an LD is 

dominated by stimulated emission that is coherent and extremely narrow band.  In 

comparison, the light exiting an LED is all spontaneous emission, incoherent, and very 

broadband [2].  Since a SLD is made from a single-pass amplifier of spontaneous 

emission, the light exiting the emitting facet of a SLD is mostly incoherent, but there is 

some coherence due to the stimulated emission process used in the amplification that 

undesirably narrows the emission spectrum [3].  Also due to the residual reflection from 

the facets in a SLD, there is an associated Fabry-Perot gain ripple in the emission 

spectrum.  Thus, although higher power can be realized by electrically pumping the SLD  
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at higher currents or by lengthening the cavity, the tradeoff is that the emission spectrum 

narrows and obtains a spectrally-modulated emission.  A depiction of the 

electroluminescence curves can be seen in Figure 1-1.   

The light-versus-current (L-I) curves for the SLD, LD, and LED are shown in 

Figure 1-2 [3].  The power of an LED varies linearly with the current unlike a laser, 

which has a sharp turn when it reaches threshold.  A SLD L-I curve is more similar to 

that of a laser, except threshold is not as pronounced. 
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Figure 1-1.  Generic schematic of electroluminescence curve for (a) LED (b) multimode 

laser (c) ideal SLD[3]   
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Figure 1-2.  Generic schematic of L-I curves for an (a) LED, (b) laser diode, and SLD [3] 
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1.2 SLD Applications 

SLDs have a variety of uses in applications that require a light source with a broad 

emission spectrum.  Their most popular uses are in the fields of Optical Coherence 

Tomography (OCT), gyroscopes, and fiber-optic sensors [4].  OCT is a type of medical 

imaging which uses a broad-band light source such as a SLD [5].  It produces high-

resolution two-dimensional cross-sectional images of living tissue.  It is based on low-

coherence interferometry.  Femtosecond lasers and external cavity scanning lasers are 

common light sources used in OCT.  However, they are expensive and difficult to operate 

[6].  The broad bandwidth and low cost of SLDs make them promising sources for OCT 

[7].  Using compact broad-band optical sources, like SLDs, and fiber optics, OCT 

systems can be portable.  A few factors important to the OCT optical source include 

longitudinal resolution, penetration into the tissue, high irradiance, and overall system 

cost.  A wider bandwidth will produce better resolution.  A graph relating the longitudinal 

resolution to the optical source bandwidth is shown in Figure 1-3 [8]. 

OCT with resolutions of 10µm-15µm has been used in applications such as 

cardiology, gastroenterology, and ophthalmology [8].  However, skin cells are on the 

order of 20µm, so a resolution of about 5µm is required for diagnosing an aberrant cell.  

As can be seen from Figure 1-3, a bandwidth of 150nm will produce a resolution of 5µm, 

therefore a bandwidth of at least 150nm is ultimately desirable for high resolution OCT 

[8]. 
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The furthest penetration into the skin has been achieved with sources emitting at  

wavelengths between 1200 and 1800nm[7].  An emission peak of 1200nm is optimum to 

reduce scattering in the tissue.  Higher energy light such as blue and UV have a short 

penetration depth and can only give images less than a few hundred microns thick.  

Wavelengths above 2500 nm are also not ideal because of the vibrational absorption of 

water [7].   

OCT requires a high-powered source to fill the need for wide dynamic range and 

high detection sensitivity for imaging backscattering structures deep inside tissue.  SLDs 

used for OCT at 1300nm require a general output power between 1mW and 5mW.  [7] 
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Figure 1-3.  Longitudinal resolution versus optical source bandwidth.  Standard OCT 

resolution is worse than 14µm.  A bandwidth of 100nm yields a resolution of 8µm while 

a bandwidth of 150nm yields a resolution of 5µm.[8] 
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1.3 Quantum Dots 

Currently nanoscience and nanotechnology are important areas of research because 

of their ability to provide advances in modern physics, chemistry, biology, and many 

areas of engineering technology [9, 10].  Semiconductor nanostructures such as quantum 

dots (QDs) are one of the many interesting topics in the field of nanotechnology.  

Semiconductor quantum dots exhibit properties that are superior to bulk material and 

quantum wells.  They are considered to be zero-dimensional (0D) systems, which means 

they enable three dimensional confinement of electron-hole pairs.  This characteristic 

results in discrete, quantized energy levels and a delta function like density of states, and 

gives the dots advantages over bulk, quantum well, and quantum wire structures. 

The bulk density-of-states is continuous as shown below in Figure 1-4, and is 

considered a 3D system, which means that it has no confinement in any direction.  

Quantum wells have one dimension of confinement and the density of states decreases 

and looks like a step function.  The quantum wire, a 1-dimensional system, has two-

dimensional confinement, further decreasing the density of states.  The quantum dot is a 

zero-dimensional system that exhibits 3D confinement, reducing the density of states to 

delta functions.  This delta-function density of states gives the quantum dot advantages 

over other structures in semiconductor lasers (a close cousin of the SLD), such as a low 

threshold current density, high T0 value, a relatively temperature-insensitive threshold 

current, improved high-speed modulation, decreased linewidth enhancement factor, and 

broader bandwidth from an easily saturated gain and absorption.   
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Figure 1-4.  Density of states for (left) bulk, (left center) quantum well, (right center) and 

(right) quantum dot.  The quantum dot have  [15] 
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A real, epitaxial quantum dot is a nanoscale semiconductor structure in the shape 

of a disk or square pyramid that is embedded in a wider bandgap semiconductor.  The dot 

confining dimensions are near that of the De Broglie wavelength of the electron.  

Quantum dots are used in a variety of technical applications including but not limited to 

lasers, infrared detectors, optical amplifiers, charge storage devices, and quantum 

information processing devices [11].  Today quantum dots can be made into defect-free 

islands that are self-organized and self-assembled.  These defect-free islands are realized 

by self-organized epitaxial growth of mismatched semiconductor heterostructures.  Most 

of the research of epitaxial semiconductor quantum dots has been done with GaAs and 

InP- based materials but progress is being made with other materials such as group III-

nitrides and silicon [12].  Quantum dots are generally grown in layers, with each layer 

separated by a barrier material.  Each layer of dots can contain 10
10

 - 10
12 

of dots per 

square centimeter.  The dots can vary slightly in shape and size with a Gaussian 

distribution, contributing to a broader emission bandwidth due to the variation in the 

bandgap from the quantum size effect.  The peak wavelength of InAs quantum dots 

grown on GaAs can be tuned over the range of 950 to 1330 nm.  The tuning is achieved 

by varying the size, shape and composition of the dot, which is done by varying growth 

parameters.  There is a special type of dot structure called chirped quantum dots, in which 

each quantum dot layer in the active region can be tuned to a slightly different peak 

emission wavelength [13].  In one special case, optimal chirping of the QD active region 

results when each layer, or every other layer, has a peak wavelength corresponding to the 



 11 

half power wavelength of an adjacent layer.  This results in an even broader and flatter 

bandwidth.[4]       

The wider bandwidth is especially useful for SLDs.  The quantum dot discrete 

energy levels cause the SLD output spectrum to have several distinct humps, depending 

on the current pump level.  If pumped at low current levels, where the ground state 

energy level has not yet filled, the output spectrum will have one hump.  If pumped at a 

higher current level the ground state will fill and emission from the first excited state will 

emerge.  When pumped even higher the first excited state emission will dominate the 

emission spectrum.  The result is an oddly shaped output emission spectrum with two 

humps at different intensity levels, the excited state emission being higher.  The best 

bandwidth scenario occurs when the excited state emission and the ground state emission 

are at the same intensity as seen in Figure 1-5.   
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Figure 1-5.  Dependence of SLD emission spectrum on injection current.   As the current 

increases the excited state emerges.  The widest bandwidth occurs when the excited state 

and ground state peaks are at the same intensity.  Here ∆S is the distance between the 

bottom of the dip between the two peaks and the top of the two peaks.  This dip is 

undesirable for OCT and can produce a ghost image.  [14]    
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1.4 Different SLD Designs 

There are several SLD designs used to achieve amplified spontaneous emission, and 

there are many different clever ways people are trying to achieve high power and bandwidth 

with SLDs.  These techniques include ground state and excited state emission 

simultaneously, chirped quantum dots, and tapered waveguides just to name a few [4, 13, 16]  

Most new SLD research takes place below or near the 1µm band, which is not an 

optimum band, as discussed before.  A conventional two-section SLD involves the use of 

segmented, electrically-isolated anodes where one section acts as an absorber and the other is 

electrically pumped and emits light.  The absorber section is reverse biased and serves to 

discourage feedback from the back facet of the SLD such that the device operates as a true 

single-pass amplifier.  Another method is to use a tilted waveguide, in which the reflected 

light from the back facet will not enter into the waveguide due to the angle between the 

waveguide and back facet [17].  See Figure 1-6.  This method introduces alignment 

complications as well as output coupling challenges in a typical optical fiber package [17].  A 

V-groove etch, which angles the facet, is also a method to reduce reflection from the back 

facet [18].  See Figure 1-6.  All the techniques above are successful at suppressing the 

stimulated emission, but cannot solve the issue of simultaneous wide bandwidth and high 

power.  To solve this issue different techniques to broaden the active region emission have 

been developed.   
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(a) 

 

 

(b) 

Figure 1-6.  (a) top view example of a tilted waveguide, where L is the length of the 

waveguide and θt is the waveguide deviation angle from the normal angle to the facet (image 

recreated from [20]) (b) Example of a tapered waveguide and a V-groove etch (image created 

by Z.Y.  Zhang from the University of Sheffield) 
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As mentioned previously, chirped quantum dots consist of multiple layers of quantum 

dots with each layer being tuned to a different peak wavelength.  This widens the bandwidth 

of the emission spectrum.  A SLD with chirped quantum dots, which achieved 32mW of 

power and a bandwidth of up to 98nm, was reported.  The wavelength range covered was 

1084nm to 1182nm.  [13] However, there was no reported way to control the combination of 

the ground and excited state output emission spectra.    

A tapered active region has been used to produce high power SLDs.  One group has 

produced a SLD that emits over 200mW of power and a bandwidth of 70nm.  The peak 

wavelengths were at 1012nm, 1036nm, and 1056nm.  A tapered active region was used to 

increase power along with a V-groove etch to achieve low reflectivity.  The active region 

was composed of an inhomogeneously broadened, five-layer stack of InAs-GaAs 

quantum dots that produced a drive-current-insensitive output spectra.  However, the 

facet output area was 105µm [16], making it difficult to couple directly into a fiber.   

  Getting ground state emission and excited state emission to contribute to the 

bandwidth simultaneously requires their peaks to be of comparable intensities.  This has 

been done using chirped quantum dot layers.  Using tilted facets, a group achieved a 

bandwidth of 121nm and a power of 1.5mW under pulsed operation emitting from 

1165nm to 1286nm.[4] The device power was limited to the ground state emission.  As 

the current was increased above a certain point, the excited state takes over.  The excited 

state intensity is fine tuned to the level of the ground state intensity; suppressing the 

power the excited state is capable of achieving.         
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A better option would be fine-tuning the intensity of the ground state to meet the 

intensity of the excited state emission.  An ideal situation involves the excited state 

emission at its highest possible power, at saturation.  Then the ground state emission 

intensity can be tuned to that same level.  The device would then be emitting its highest 

possible power with its highest bandwidth at that power.  This method is realized with the 

multi-section SLD design [19].  The multi-section design allows for independent 

adjustment of the ground state and excited state spectral bandwidth and power.  This 

enables the realization of a wide bandwidth and high power.  An OCT scan done with a 

multi-section SLD source can be seen in Figure 1-7. 

An equation to describe the electroluminescence (EL) spectrum of the multi-

section SLD has been formulated by Y.C.  Xin.  This equation predicts the optimized 

configuration for undoped and p-doped conventional InA/sGaAs quantum dot SLDs.  

[19] The objective of this thesis is to confirm that the multi-section SLD equation works 

when applied to different materials, and realize wide bandwidth with reasonable power at 

a center wavelength of 1.2um.   

In chapter 2 the multi-section SLD will be discussed in detail.  The theory behind 

the gain measurements and the SLD measurements will be discussed.  In chapter 3 the lab 

test procedure will be introduced in detail and the test results will be discussed.  

Simulations done with the predictive equation will be presented.  The consistency 

between theory and the actual data will show that the predictive equation is effective in 

simulating the emission spectrum of chirped quantum dot material.   
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Figure 1-7.  The top image is an OCT scan of onion skin using a multi-section SLD as the 

source.  The multi-section SLD was developed by Luke Lester’s group at CHTM.  The 

bottom image is an OCT scan of an onion skin using a halogen lamp as the source.  The 

scans were taken by Southwest Sciences.   
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Chapter 2 The Multi-Section SLD  

 

2.1 Two-Section Quantum Dot SLD 

Before multi-section SLDs are discussed, it is beneficial to understand how a two-

section SLD works, and its limitations.  As mentioned previously, a two section SLD is a 

ridge waveguide edge-emitting optoelectronic device.  It contains a gain section and an 

absorber section as can be seen in Figure 2-1(b).  The front section is the gain section and 

emits at both the excited state and the ground state of the quantum dot active region, 

depending on the pump level.  The back section is the absorber section, which is usually 

reverse-biased.  If the back section is sufficiently long compared to the front section, 

most of the light passing through the absorber section will be significantly attenuated.  

However, if the absorber section is not sufficiently long, or the pump current in the front 

section is very high, then a reverse voltage across the absorber is necessary for the photon 

absorption that is needed to discourage laser action.  When the quantum dot absorber 

section saturates (bleaches) at high pump currents, the SLD will operate as a laser.  This 

condition, therefore, represents the upper limit on the output power of the SLD.  For the 

quantum dot active regions investigated here, at low pump currents the emission 

spectrum is dominated by ground state emission.  As the current density in the front 

section increases the first excited state emission will emerge, and will eventually 

dominate the emission spectrum.  The widest bandwidth occurs when the ground state 

and excited state emission intensities are equal; however, usually this situation will not 

result in the highest power.  Higher power occurs when the front section is pumped at  
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high currents, and the excited state dominates; however this yields a reduced bandwidth 

as depicted in Figure 2-1.  With a 3-mm gain section SLD, a bandwidth of 100nm was 

achieved, but an output power of less than 0.1mW was produced [1].  With a higher 

pump current the output power could increase to 0.3mW, however the FWHM bandwidth 

decreased to 65nm.  A high power and wide bandwidth are not easily achieved with the 

two-section SLD. 
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(b) 

Figure 2-1 (a) Typical EL spectrum of a two-section SLD with excited state dominated 
emission.  This results in an irregular spectrum shape.   (b) Conventional two-section 
edge emitting SLD structure, with one gain section and one absorber section.   
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2.2 Multi-Section Quantum Dot SLD 

The multi-section SLD design uses more than one gain section to achieve high power 

and wide bandwidth simultaneously as shown in Figure 2-2.  In this thesis a multi-section 

SLD with two gain sections and one absorber section is studied.  With two electrically-

isolated gain sections, each section can be pumped differently.  One section can be 

pumped at a high current density causing excited-state dominant emission, while the 

other gain section can be pumped at a lower current density with a ground state 

dominated emission spectrum as depicted in Figure 2-2.  Both gain sections A1 and A2 

amplify the spontaneous emission.  For optimum results, the front gain section, A1, that is 

nearest the emitting facet is pumped with a higher current density to produce excited state 

dominated emission, while the second or back gain section, A2, is pumped with a much 

lower current density to emit ground state dominated emission.   
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Figure 2-2.  A three-section SLD with a possible EL curve, with excited state emission  
primarily from A1 and ground state emission mostly from A2.  The front section is biased 
at a high current density and the back section is biased at a lower current density.  The 
absorber section can be reverse biased for further photon absorption[1]. 

ES 
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The length of each section, L1 and L2, as well as the pump level in each section both 

effect the final output spectrum of the device, as well as the gain G in each section at 

different current densities J1 and J2.  The equation that describes the SLD 

electroluminescence spectrum is derived from the amplified spontaneous emission (ASE) 

intensity (I) equation below.  [2]  

( ) exp( )ASE o

S S
I I G x

G G
= + ⋅ −  Eqn 2-1 

 

Here I0 is the pre-existing intensity entering the pumped region at x=0.  S is the pure 

spontaneous emission, G is the net modal gain, and x is the position along the length of 

the pumped section.  The net modal gain is defined by: 

m iG g α= Γ −  Eqn 2-2

   

where Γ is the confinement factor, gm is the material gain, and αi is the internal loss.  

Considering the three-section SLD, which has two gain sections pumped asymmetrically, 

and the intensity equation (Eqn 2-1), an equation to describe the output spectrum of the 

this new device can be derived.  The intensity I2 produced by the back section A2 at x=L2, 

or the end of the pumped section, can be described using Eqn 2-1, where I0 will be zero in 

this case because there is no intensity entering the device from the point x=0, or the edge 

of section A2 nearest to the absorber.   

 

2 2
2 2 2

2 2

exp( )
S S

I G L
G G

= ⋅ −  Eqn 2-3 
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The intensity I1 exiting the front section A1 can also be described using Eqn 2-1.  The 

intensity I2 created by A2 will be the starting intensity for section A1 at point x=0.   

1 1
1 2 1 1

1 1

exp( )
S S

I I G L
G G

 
= + ⋅ − 
 

 
Eqn 2-4

  
 

Where I1 is the output emission intensity of the SLD exiting A1 at the front facet of the 

device.  Rearranging this equation leads to: 

1 1
1 2 1 1 1 1

1 1

exp( ) exp( )
S S

I I G L G L
G G

= ⋅ + ⋅ −  Eqn 2-5 

 

Where I2 can now be substituted, resulting in:  

2 2 1 1
1 2 2 1 1 1 1

2 2 1 1

exp( ) exp( ) exp( )
S S S S

I G L G L G L
G G G G

 
= ⋅ − ⋅ + ⋅ − 
 

 
Eqn 2-6 

 

Expanding the first term results in:  

2 2 1 1
1 2 2 1 1 1 1 1 1

2 2 1 1

exp( )exp( ) exp( ) exp( )
S S S S

I G L G L G L G L
G G G G

= ⋅ ⋅ − ⋅ + ⋅ −  Eqn 2-7 

 

Gathering like-terms yields:  

2 1 2 1
1 2 2 1 1 1 1

2 1 2 1

exp( ) exp( )
S S S S

I G L G L G L
G G G G

 
= ⋅ + ⋅ + − ⋅ − 

 
 

Eqn 2-8 

 

 which describes the intensity of a three-section SLD.[3]  Re-writing this equation to 

show S and G dependencies results in the equation below.       
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2 2
2 2 2 1 1 1

2 2

1 1 2 2 1 1
1 1 1

1 1 2 2 1 1

( , , )
( ) exp[ ( , , ) ( , , ) ]

( , , )

( , , ) ( , , ) ( , , )
exp( ( , , ) )

( , , ) ( , , ) ( , , )

S J T
I G J T L G J T L

G J T

S J T S J T S J T
G J T L

G J T G J T G J T

λ
λ λ λ

λ

λ λ λ
λ

λ λ λ

= ⋅ + ⋅

 
+ − ⋅ − 
 

 Eqn 2-9 

 

 Here J1 and J2 are the injected current densities in sections A1 and A2, T1 and T2 are 

the junction temperatures of each section, and λ is the wavelength.  The gain and 

spontaneous emission are both functions of current density, junction temperature, and 

wavelength.   

Knowing the accurate gain spectra and spontaneous emission at different current 

densities for A1 and A2, a whole range of output emission spectra can be simulated by 

varying the lengths L1 and L2.  Hence the optimized structures of a SLD with the best 

combination of power and bandwidth can be predicted without having to test a myriad of 

possible SLD configurations.  The gain and spontaneous testing process as well as the 

SLD testing process can be found later in this chapter.   

 

2.3 Design and Fabrication 

If a single device is going to be tested as a three-section SLD with varying lengths 

for each section, then a flexible design is required.  For this we use the segmented contact 

structure which can be seen in Figure 2-3.  The multi-section SLD devices consist of a 

3µm wide ridge waveguide.  The ridge is divided into 500µm sections, also referred to as 

anodes, all electrically isolated from each other.  This design allows us to vary the gain 

section lengths by multiples of 500µm.  This can be achieved by wire bonding the desired  
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number of adjacent 500µm sections together, creating a single gain section.  The 

waveguide is not tilted and the facets are cleaved.  Hence the device can be tested using 

free-space coupling or by using a single mode fiber with a lens.  The next section of the 

thesis describes the process flow that realizes the multi-section, segmented contact SLD. 
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Figure 2-3.  Segmented contact device structure.  Each anode is 0.5mm long and is 
electrically isolated.  They all share a common optical waveguide.   They can be 
connected together via wire bonding in order to create desired SLD gain section lengths.  
This segmented contact device offers design flexibility.[1] 
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The wafer from which our SLD devices were made was grown by Zia Laser, Inc.  

ZLG 1075F was grown by molecular beam epitaxy and has 6 InAs-InGaAS dot-in-well   

layers with GaAs barriers.  The cladding layers are Al0.66Ga0.34As.  The GaAs barriers 

layers above the dot layers are modulated p-doped with 60 holes per dot.  P-doping 

increases the gain.  The ground state emission is centered at 1.2um.   

 The SLDs are processed following standard ridge waveguide processing techniques 

including ion implantation.  The wafer is cleaned and the native oxide layer is removed.  

The patterning for the ridge is created on the p-side using UV contact photolithography.  

The mask contains several repeat device patterns to increase the yield.  The ridge is 

etched with BCl3 using an inductively coupled plasma (ICP) machine.  The ridge is 

etched to just 0.1 µm above the active region to reduce current spreading and improve the 

optical field confinement for single lateral mode operation.  Liquid BCB is evenly spun 

on to the surface of the wafer and baked until sufficiently hard at 250 °C.  The BCB is 

then etched back with Oxygen and CHF3 using a reactive ion etch (RIE) machine until 

the surface of the ridge is clear.  The BCB filled between ridges acts as an electrical 

isolation layer for the p-metal after this self-alignment process.  The second 

photolithography forms the pattern for the metal contact.  The p-metal metal consisting of 

500 Å titanium (Ti), 500 Å platinum (Pt), and 3000 Å gold (Au) is evaporated on to the 

device using an electron beam evaporator.  A second metallization of Ti/Au is used to 

increase the p-metal thickness to at least 1 µm for good metal step coverage over the edge 

of the ridge where the BCB can be overetched.  This thick, soft evaporated Au second 

metal also makes wire bonding easier.  Photolithography is performed again to create the  
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ion implantation pattern.  A thick layer of photoresist covers the entire sample with 

clearances at the 5 µm gaps between each 500µm section.  The sample is processed using 

proton implantation to electrically isolate each 500µm section.  This provides greater than 

10 MΩ of electrical isolation.  By lapping and polishing using fine-grained aluminum 

oxide pads, the final sample thickness is between 100µm and 200µm to ensure high 

quality cleave facets and sufficient thermal heat sinking.  N-type metal consisting of 

Ge/Au/Ni/Au is then evaporated on to the back side and annealed at 380°C.  Higher 

temperatures would crack the BCB.  A simple depiction of this process is shown in 

Figure 2-4.  The ridge waveguide devices on the sample are then cleaved in to several 

independent devices.  The multi-section devices are mounted on an AlN chip for 

improved heat sinking and are ready to be tested.   
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Figure 2-4.  Standard process for fabricating ridge waveguide segmented contact devices.  
(figure recreated from [1]).   
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2.4 Optical Gain and Measurement  

The optical gain is the fractional increase in optical mode intensity per unit distance 

traveled.  There are different ways to measure gain of a semiconductor laser.  One way is 

called the Hakki-Paoli technique, which determines gain by measuring the peak-to-valley 

ratio between longitudinal modes in a Fabry-Perot cavity below laser threshold.  This 

technique requires a high spectral resolution to resolve longitudinal modes and is limited 

to current densities below the lasing threshold, which can be quite low for quantum dot 

active media.[4] Another method is the Henry technique, which determines gain by 

transforming the spontaneous emission.  This method does not give the gain in absolute 

units.[5] A variable stripe method, which involves analyzing the spontaneous emission as 

a function of length, requires a constant collection efficiency and optical or electrical 

pumping.[6] 

For this thesis, the so-called segmented contact method for measuring the optical 

gain was favored because it provides the gain spectrum in absolute units over a wide 

current range.[7,8].  The technique is based on the measurement of amplified 

spontaneous emission.  In addition, this characterization meshes well with the multi-

section layout of our SLD because the fundamental gain and absorption parameters of the 

active material can be tested on the actual device and then the optical circuit can be re-

configured with wire bonding to fabricate the SLD. 

The segmented contact method for measuring the gain and absorption as a function 

of wavelength normally needs only 2 sections of a known equal length to be realized.  

First, the section nearest the emitting facet is biased at the desired current level, and the  



 35 

intensity versus wavelength is measured.  This data serves as the calibrated source.  Next, 

both sections are biased at this same desired current level.  In this instance, the back 

section is now the calibrated source and the front section is treated as an amplifier of 

known length.  It is straightforward then to calculate the optical gain per cm of the 

material.  If the front section diode is reverse-biased, the resulting calculation yields the 

absorption of the active region.  Thus, the simplicity and flexibility of the segmented 

contact method has made it very popular. 

However, unless a rather cumbersome slit is used in front of the emitting facet the 

segmented contact method ignores the unguided spontaneous emission that is especially 

prevalent in quantum dot edge emitting LEDs.  The latter occurs because QD active 

media have a relatively smaller optical gain than quantum well active regions.  The 

improved segmented contact method is more appropriate for the quantum dot devices 

studied in this thesis [9] because it provides a cleaner and more accurate gain spectrum 

for QDs.  The improved segmented contact method is based on the original segmented 

contact method but adds another section that permits background subtraction and the 

option of direct coupling into an optical fiber from the emitting facet.   The basic 

difference between the improved and original segmented contact methods is how the 

background noise is eliminated.  The original technique excludes the noise by virtue of a 

change in the experimental apparatus (the slit) and requires more stringent optical 

alignment and experimental skill.  The improved version relaxes the requirements on the 

experimentalist and the optical alignment by making a third intensity measurement.  The 

background noise is then subtracted out mathematically by a revised set of equations that 

are derived next. 



 36 

The differential intensity of the amplified spontaneous emission, IASE, with 

transmission length, x, optical gain, G, and the pure spontaneous emission intensity, S, 

can be related with the equation below.  [10]   

ASE
ASE

dI
GI S

dx
= +  Eqn 2-10 

 

 If the IASE = 0 at x = 0, the usual boundary condition, then the following equation is true.  

[6] 

(exp( ) 1)ASE

S
I g x

G
= ⋅ −  Eqn 2-11 

 

The unguided spontaneous emission that results from leakage current in the device or 

from an imperfect waveguide (Ileak) can induce errors in the gain data as was mentioned 

above.  It can be related to the measured intensity as follows:[9]  

ASE leakI I I= +  Eqn 2-12 

 

In the improved segmented contact method, the net modal gain can be analyzed from 

the ASE emission under three different pump configurations.  The data from single, 

double, and triple biased sections is manipulated.  First the very front section is pumped 

with a certain current density of J1=J, and the ASE intensity of I1 is measured.  Next the 

first section is left on with the exact same J1, but now the second section is pumped with 

current density J2=J, and the intensity I2 is measured.  Next the third section is pumped 

with current density J3=J, the second section with J, and the first section is still biased at 
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J1.  The intensity I3 is measured.  From Eqn 2-11 and Eqn 2-12, intensities I1, I2, and I3 

can be expressed as follows:[9]  

1
1 1 1

1

1
2 1 1 2

1

1
3 1 1 3

1

[exp( ) 1]

exp( )[exp( ) 1] [exp( ) 1]

exp( )[exp(2 ) 1] [exp( ) 1]

leak

leak

leak

S
I G L I

G

SS
I G L GL G L I

G G

SS
I G L GL G L I

G G

= − +

= − + − +

= − + − +

 Eqn 2-13 

 

In the equations above, G1 corresponds to the net modal gain when the section is biased 

with J1 and G corresponds to the net modal gain when a section is biased with J.  The 

usual experimental condition is J1=J2=J3=J, but the more general form of Eqn 2-13 

allows for more flexibility in allowing the source term I1 to differ from the amplifier 

sections. 

The unguided spontaneous emission exiting from sections 2 and 3 will primarily 

radiate out of the optical waveguide and never make it to the coupling lens, leaving 

section 1 the dominant source for unguided spontaneous emission.  If we assume that the 

total Ileak is the same for the different pumping configurations, mathematically that 

Ileak1=Ileak2=Ileak3, then we can say [9]  

3 1

2 1

1
ln( 1)

I I
G

L I I

−
= −

−
 Eqn 2- 14 

 

The unguided spontaneous emission terms cancel out in Eqn 2- 14.  Hence the 

improved segmented contact method has the ability to measure small gain values  
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accurately.  This improved segmented contact method was tested for accuracy two 

different ways.  First the gain with 1-mm long sections was extracted and the gain with 

1.5-mm long sections was extracted, both using the same current density.  It was verified 

that the gain from both lengths corresponded very nicely.  Next a self-calibrating method 

was used to verify the accuracy.  The device was made to act like a laser, and the gain 

data was derived from the threshold condition at a certain wavelength.  The gain at the 

threshold current density was taken using the segmented contact method as well.  The 

two gains corresponded nicely to an accuracy within 0.1 cm-1. 

 

2.5 Unamplified Spontaneous Emission  

From Eqn 2-13 it is evident that the optical gain and unamplified spontaneous 

emission at specific current densities, as well as section lengths, must be gathered before 

the intensity of the SLD can be predicted.  Lengths are something that can be chosen, and 

the improved segmented contact method was introduced as a method to measure optical 

gain.  All that needs to be addressed is a mathematical expression for the unamplified 

spontaneous emission in terms of the measureable quantities in the improved segmented 

contact method.  Using Eqn 2-13 and assuming Ileak is the same for I1, I2, and I3, a 

relationship between IASE, the net modal gain, and unamplified spontaneous emission is 

given by: 

2 1 [exp( ) 1]exp( )
S

I I G L G L
G

− = ⋅ − ⋅  Eqn 2-15 

 

This can be re-arranged to produce an equation relating the unamplified spontaneous  
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emission S in terms of G, L, and I1 and I2. 

2 1

(exp( ) 1)exp( )

I I
S G

G L G L

−
=

⋅ − ⋅
 Eqn 2-16 

 

A detailed testing procedure for the SLD measurements and the gain measurements 

can be found in the next chapter, as well as SLD emission simulations from the gain 

measurements using Eqn 2-9. 

 

2.6 Summary  

The purpose of this project was to realize a SLD device with a peak emission 

wavelength of 1200nm, a bandwidth of at least 100nm with a dip less than 3dB, and a 

reasonable output power.  The dip between the excited state and the ground state 

emissions is undesirable for OCT and can produce a ghost image or double image.  In 

this chapter the basic two-section SLD design was discussed, and its shortcomings were 

revealed.  The multi-section SLD design was shown to provide high power and the ability 

to achieve a wide bandwidth by aligning the excited state peak emission with the ground 

state peak emission.  An equation used to predict SLD electroluminescence spectrums 

was discussed.  The improved segmented contact method was introduced as the best way 

to measure gain for quantum dot ridge-wave guided devices due to its ability to cancel 

noise created from unguided spontaneous emission.  A way to extract unampified 

spontaneous emission was also discussed.   
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Chapter 3 - Testing Procedure and Results 

 

3.1 General SLD measurement process 

There are many possible SLD configurations with many different current densities 

that can be tested.  For any given configuration, maximum power and bandwidth are 

desired.  To reduce the amount of test options, the saturated power for possible lengths of 

the front section L1 is measured and L1 is biased at its saturation current density during 

SLD measurements.  It has been determined in the past that the optimum configuration 

for a SLD with two gain sections has the length of amplifier A1about half the length of 

A2.  The entire cavity length of the device is considered, and A1 and A2 are divided such 

that the ratio of L1 to L2 is about ½.  Intensity measurements used to extract gain, which 

are referred to as Gain measurements in this chapter, are taken at the A1 saturation current 

density, as well as a wide range of lower current densities for A2.  Once all desired 

intensity measurements are taken there is enough data to begin extracting gain spectra, 

then the unamplified spontaneous emission can be extracted as well.  With the gain and 

spontaneous emission spectrums available, the predictive SLD equation (Eqn 2-9) can be 

used to create theoretical SLD electroluminescence curves.  Several curves can be 

generated.  Power measurements are then taken for different SLD configurations, and a 

graph comparing bandwidth and power can help identify configurations with a 

combination of optimum power and bandwidth.  Next, SLD EL measurements can be 

taken for the configurations that theoretically yield desirable results.  In this thesis only 

CW pump conditions are used.     
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3.2 Saturated Power Test Procedure and Results 

First the desired devices must be separated from the larger wafer sample.  After the 

desired sample is made independent, and the desired length is chosen, the end facets are 

cleaved, creating a smooth facet with 32% reflectivity.  The device is mounted n-side 

down on to a copper heat sink using indium.  The sample is then placed on copper 

submount that is bonded to a thermoelectric (TE) cooler.  The TE cooler is used to hold 

the temperature at 28°C, which is a realistic operating temperature for a SLD.  The device 

is probed with a special probing apparatus that contains several independent tiny probes.  

Each probe is electrically isolated and hooked up to an ILX Lightwave LDC 3916 16-

channel Laser Diode Controller through a 16-probe card.  Each needle has a diameter of 

0.75mm and is connected to one of the bond pads on the device as seen in Figure 3-1 

below.  The total current is monitored with a multi-meter.  The device is positioned so 

that one facet hangs over (less than 50µm) the edge of the copper to prevent reflections 

from the copper.         
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Figure 3-1.  Device Probing Setup.  Several electrically isolated probes are used to 

contact each electrically isolated anode.   
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The saturated power of the first few sections is found, and A1 is biased at the 

current density associated with this saturated or maximum power.  If A1 is biased at a 

current density higher than that of the saturation current density then heating is increased 

and a red shift occurs, and there is no increase in power.  Finding the saturated power is 

done with an integrating sphere (Labsphere brand) that can capture all of the light from 

the large beam divergence SLD.  The Labsphere is positioned in front of the facet, with 

the facet pointing directly into the back of the Labsphere.  The 16-channel current source 

contains a GPIB card that allows it to be controlled remotely by a computer.  An Igor Pro 

computer program is used to control the source and set the current in each probe.  The 

data from the Labsphere can also be extracted using Igor Pro.  To find the saturated 

power, the desired section length is chosen in Igor, and the current is set to scan in the 

desired probes.  For the purpose of finding the saturated power, the current is scanned in 

the first 500µm section and the current near the saturated power is noted.  This is done 

with a 1-mm long section, and then a 1.5-mm long section, and finally 2-mm long 

section.  The setup can be seen in Figure 3-2 and the results can be seen in Figure 3-3.  

For the 2-mm long device the power saturates at about 180mA per 500µm section.       
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Figure 3-2.  Power measurement setup.  This setup involves a laser diode controller, a 

probe card, a labsphere, and a computer to record the data.   
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Figure 3-3.  L-I curve for a 2-mm long section.  The power saturates between  

700 and 750mA, or at about 180mA per 0.5-mm long section. 
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3.3 Gain Measurement Procedure and Results 

The theory for measuring gain was described in Chapter 2.  In this section the lab 

testing procedure for measuring gain is discussed.  The Labsphere from the previous test 

is removed from the setup, and an optical head consisting of a lens, isolator and fiber 

pigtail is placed directly at the front facet.  The fiber is hooked up to a power meter 

initially for alignment.  The maximum coupling efficiency is 40%.  The probes were all 

activated, and equal current was distributed to each 500µm section.  With each section 

being pumped with equal current the device acts as a laser and alignment is easily done 

above the threshold.  After good alignment is achieved the power meter is removed and 

the end of the fiber is now connected to an Agilent 86142B Optical Spectrum Analyzer.  

The resolution is set to 1nm and the averaging is set to 10.  The setup can be seen in 

Figure 3-4.  Everything is now set up properly to begin taking measurements for 

intensities I1, I2, and I3.  For our purposes there is no need to pump the first section with a 

different current density than the other two sections as was generally described in Eqn.  

(2-13).  The first section is pumped with the desired current density J and I1 is measured.  

Then the first and second sections are each simultaneously pumped with the same current 

density J and I2 is measured.  Then all three adjacent sections are simultaneously pumped 

with the same current density J and I3 is taken.  One set of I1, I2, and I3 EL spectra can be 

seen in Figure 3-5.  In this particular device there is 5mm of un-pumped device to act as 

an absorber so there is no back reflection interfering with the measurements.  This 

process was repeated for currents from 4mA to 10mA.  The gain was extracted from the 

data taken using Eqn 2-14, where L in this case is 500um.  This data is taken in order to  
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simulate ground state emission from the second gain section.  The results can be seen in 

Figure 3-6.  There is gain only for the ground state in these gain graphs.  For some 

current densities it appears as though there is no gain at all.  This loss is due to the gain 

section acting like an absorber at low current densities.  For a 2-mm long section the 

power saturates at about 180mA/section, so gain measurements were taken at 

180mA/section.  This data is taken at such a high current density to simulate the excited 

state emission from the front gain section using Eqn 2-9.  The results are in Figure 3-6.  

We can see from this figure that there is gain in both the ground state and excited state.  

The unamplified spontaneous emission curves are also extracted from this data using Eqn 

2-16. 
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Figure 3-4 Gain measurement setup.  This setup include a laser diode controller, a probe 

card, an optical head connected to a single mode fiber, an optical spectrum analyzer, and 

a computer to record the data.   
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Figure 3-5.  EL Curves for I1, I2, and I3 at 5mA per 0.5-mm long section.  Gain and 

spontaneous emission spectra are calculated from measured I1, I2, and I3 spectra. 
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Figure 3-6.  Extracted gain measurement for (a)  lower current densities 4mA -

10mA/0.5mm long section (b)  and at 180mA/0.5mm long section 
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3.4 Simulations 

With the SLD predictive equation (Eqn 2-9), theoretical SLD EL spectrums for 

many configurations with different pump currents can be generated.  The configurations 

at current densities which yield the highest bandwidth can be determined.  At this point in 

the testing all the data that is needed to create a simulated EL SLD spectrum is available.  

Several simulations were done.  The first was done with an L1 of 0.5mm and a varied L2.   

Simulations with an L1 of 1mm were done, while L2 was varied.  It has been 

demonstrated that the widest bandwidths occur when L2 is roughly twice the length of L1.  

For this reason, only theoretical configurations where L2 is about twice L1 were 

simulated.  This process was repeated for L1 being 1.5mm, 2mm, and 2.5mm.  The results 

can be seen in Figure 3-7 and Figure 3-8.  The higher bandwidths result in the shorter 

overall cavity length.  As the total cavity length L1+L2 becomes larger, the bandwidth 

decreases.  It is evident from Table 3-1 that as L1 increases the maximum bandwidth for 

each different L1 length decreases.     
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1st Section 
Length (L1) 

2nd section  
Length (L2) 

Bandwidth 
(3-dB) 

0.5mm 1mm 148nm 

 1.5mm 142nm 

 2mm 132nm 

1mm 1.5mm 144nm 

 2mm 148nm 

 2.5mm 134nm 

1.5mm 2mm 114nm 

 2.5mm 113nm 

 3mm 123nm 

 3.5mm 124nm 

2mm 3mm 97nm 

 3.5mm 101nm 

 4mm 104nm 

 4.5mm 104nm 

2.5mm 4mm 90nm 

 4.5mm 94nm 

 5mm 93nm 

  5.5mm 91nm 

 

 

Table 3-1.  Simulation Table: Includes lengths L1 and L2 and the widest simulated 

bandwidth for each configuration.  As the length of L1 increases the widest achievable 

bandwidth decreases.   
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Figure 3-7.  Simulation results for A1 section length of  0.5mm, 1mm, and 1.5mm, with 

varying lengths for A2.  The black curve is the widest bandwidth for each particular SLD 

configuration.  Each curve is simulated with a front section biased at 180ma/0.5mm long 

anode, and a second gain section biased from 4ma-10ma/0.5mm long anode.   
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Figure 3-8.  Simulation results for an A1 length of 2mm and 2.5mm, with varying lengths 

for A2.  .  The black curve is the widest bandwidth for each particular SLD configuration.  

Each curve is simulated with a front section biased at 180ma/0.5mm long anode, and a 

second gain section biased from 4ma-10ma/0.5mm long anode. 
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3.5 SLD Measurements Procedure and Results 

The theory for measuring a SLD EL spectrum was described in Chapter 2.  In this 

section the lab testing procedure for measuring the SLD EL spectrum is discussed.  The 

16-channel laser diode controller was used to control the current to each 500-um section.  

Each SLD configuration of interest was achieved by designating sections for A1 and A2 in 

Igor, and then controlling the desired current densities to each section using Igor and the 

16-channel current source.  The theoretical SLD power was calculated using the slope 

efficiency extracted from Figure 3-3.  Both simulated power and simulated bandwidth 

versus front gain section length are plotted on the same graph in Figure 3-9.  As L1 

increases the power also increases, however the bandwidth decreases.  For this project a 

bandwidth of 100nm is desired.  This is achievable for an L1 of 0.5mm to 2mm.  The 

power is above 0.2mW at an L1 of 2mm and 2.5mm.  This power is reasonable for OCT.  

An L1 of 2mm meets both the power and bandwidth requirements of this project so this 

length was chosen for SLD testing.   

The setup used to measure the SLD EL spectrum is similar to that of the gain 

measurement setup and can be seen in Figure 3-10.  The SLD is aligned to an optical 

head attached to a single mode fiber which is connected to an OSA.  SLD measurements 

were taken with an L1 of 2mm.  The length of L2 was varied and the current density was 

also varied.  A reverse-bias voltage of -4 volts was placed across the absorber section, 

which varies in length according to the different SLD configurations.  For the device used 

in this thesis the total device length is 7.5 mm.  The back facet was destroyed to further 

discourage laser action by reducing reflections.  The results can be seen in Figure 3-11.   
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The SLD EL testing with an L1 of 2mm and an L2 of 4mm produced two curves 

with an excited state peak and ground state peak at about the same intensity.   A 

bandwidth of 111nm and a power of 0.25mW were obtained for 180ma/section injected 

into A1 and 9ma/section injected into A2 as seen in Figure 3-11 (a).  A bandwidth of 

111nm and a power of 0.24mW were measured for 180ma/section injected into A1 and 

8ma/section injected into A2 as can be seen in Figure 3-11 (b).  The SLD EL testing with 

an L1 of 2mm and an L2 of 4.5mm yielded a bandwidth of 118nm and a power of 

0.224mW for 180ma/section injected into A1 and 8ma/section injected into A2 as can be 

seen in Figure 3-11 (c).  Plotting both the calculated and actual tested SLD EL spectra on 

the same graph, it can be seen that calculated shape and size for each spectrum are in 

good agreement with their corresponding actual measured data.  The measured SLD 

spectra are all slightly red shifted.  This most likely is caused from device heating.  One 

problem with the calculated data is the noise in the shorter wavelength range and number 

of points that are missing from the shorter wavelength range.  The simulated curves are 

point to point calculations from the actual I1, I2, and I3 spectra.  The noise in the 

calculated spectra is caused by the noise in the actual data at those shorter wavelengths.  

The gain is weak in the shorter wavelength range. 
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Figure 3-9.  SLD simulated power versus the L1 length compared to the SLD simulated 

bandwidth versus L1 length 
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Figure 3-10.  SLD EL curve measurement setup 
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Figure 3-11.  SLD EL spectrum measurements (red) compared to the simulations with the 

same configuration and current density(blue) 
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3.6 A Simulation Alternative for the SLD Spectrum  

To reduce the noise in the simulation demonstrated in the previous section, the 

improved segmented contact method intensity spectrums I1, I2, and I3 were curve-fitted 

using polynomial fits, each spectrum using a different number of terms to achieve the 

best fit.  The curve fitted intensity spectrums were then substituted into the gain equation 

(Eqn 2-14) and the spontaneous emission equation (Eqn 2-16), and the resulting 

spectrums were plugged in to the predictive SLD intensity equation (Eqn 2-9).  The 

improved segmented contact intensity spectrums for 8ma and 180ma were curve-fitted in 

this way and the coefficients can be seen in Table 3-2.  This produces a calculated SLD 

intensity spectrum with a front gain section (A1) pumped at 180ma/0.5mm section and a 

second gain section (A2) pumped at 8ma/.5mm section.  The length of A1 was chosen to 

be 2mm and the length of A2 was chosen to be 4mm.  The resulting SLD EL spectrum is 

not in good agreement with the actual data or the SLD EL spectrum calculated from the 

actual data I1, I2, and I3.  This is most likely due to the error in the curve fitting.  The error 

produced by the I1, I2 and I3 curve fits is then propagated in to the calculated gain and 

spontaneous spectrums and this error is amplified in the SLD EL calculated spectrum.  

The results can be seen in Figure 3-12.       

An equation consisting of the addition of two Gaussian curves was used to curve fit 

the improved segmented contact intensity data I1, I2, and I3.  The two Gaussians were 

used to pronounce SLD EL spectrum excited state peak emission and the ground state 

peak emission, causing a dip between the two.  This is more consistent with the measured 

spectra.  Each Gaussian curve peak was tuned to the ground state and excited state 

emission of I1, I2, and I3.  The curve fitted intensity spectrums were then plugged in to the 



 63 

gain equation, Eqn 2-14, and the spontaneous emission, Eqn 2-16, and the resulting 

spectrums were plugged in to Eqn 2-9.  The improved segmented contact intensity 

spectrums for 8ma and 180ma were curve fitted in this way and the coefficients can be 

seen in Table 3-3.  The resulting SLD EL spectrum is not in good agreement with the 

actual data or the SLD EL spectrum calculated from the actual data I1, I2, and I3.  Again, 

the error produced during curve fitting is responsible for the bad agreement.  The results 

can be seen in Figure 3-13. 

In an effort to create fitted SLD EL spectrums which are in good agreement with 

the SLD EL spectrums calculated from the actual data, the gain and spontaneous 

emission spectrums were calculated from the original data, and then curve fitted with 

polynomials.  This reduces the amount of error produced in the fitted curves.  Again this 

was done for improved segmented contact intensity spectrums at 180ma and 8ma and the 

coefficients can be seen in Table 3-4.  The results are in better agreement with the actual 

SLD spectrum and the SLD spectrums calculated from the original improved segmented 

contact method data, than the previous two curve fitting attempts.  The results can be 

seen in Figure 3-14.   
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Figure 3-12.  SLD EL spectrum calculated from polynomial fits of I1, I2, and I3 compared 

to (a) the actual SLD EL spectrum and (b) the SLD EL spectrum calculated from the 

actual data I1, I2, and I3 
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Figure 3-13.  SLD EL spectrum calculated from Gaussian fits of I1, I2, and I3 compared to 

(a) the actual SLD EL spectrum and (b) the SLD EL spectrum calculated from the actual 

data I1, I2, and I3 



 66 

 

1.6x10
-9

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

In
te
n
si
ty
 (
a.
u
.)

1.35um1.301.251.201.151.101.05

Wavelength (um)

6

4

2

0

x
1
0
-9 

A1: 2mm, 180ma/section

A2: 4mm, 8ma/section

 Actual SLD spectrum 

 SLD spectrum from 
polynomial fitted gain and 

spontaneous curves 

 
 

(a) 

 

 

 

8

6

4

2

0

x
1
0
-9 

1.35um1.301.251.201.151.101.05

Wavelength (um)

8x10
-9

6

4

2

0

In
te
n
si
ty
 (
a.
u
.)

A1: 2mm, 180ma/section
A2: 4mm, 8ma/section
 

 SLD spectrum calculated directly

 from the original data at 8ma and 180ma
SLD spectrum calculated using a  polynomial

fit of both the gain and  spontaneous 
 calculated curves for 8ma and 180ma 

 
 

(b) 

 

Figure 3-14.  SLD EL spectrum calculated from polynomial fits of the gain and the 

spontaneous emission spectrums (a) the actual SLD EL spectrum and (b) the SLD EL 

spectrum calculated from the actual data I1, I2, and I3 
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Polynomial Fits for 180mA I1, I2, and I3      

Equation used:  K0+K1x+K2x
2
…     

  Coefficients 
180ma I1  
values 

180ma I2  
values 

180ma I3 
 values 

  K0 6.23E-06 -0.000915203 -0.0155541 

  K1 -2.60E-05 0.00429876 0.0600921 

  K2 4.33E-05 -0.00740069 -0.0720858 

  K3 -3.58E-05 0.00453893 0.00700383 

  K4 1.47E-05 0.00158713 0.0318364 

  K5 -2.41E-06 -0.00277709 0.00407666 

  K6   -0.000382711 -0.0143682 

  K7   0.00185202 -0.00892168 

  K8   -0.00096517 0.00306146 

  K9   0.000164025 0.00665816 

  K10     0.00173217 

  K11     -0.00327504 

  K12     -0.00218002 

  K13     0.0024863 

  K14     -0.000562205 

          

Polynomial Fits for 8mA  I1, I2, and I3      

Equation used:  K0+K1x+K2x
2
…     

  Coefficients 
8ma I1 
 values 

8ma I2 
 values 

8ma I3 
 values 

  K0 9.52E-05 0.000262516 0.00050689 

  K1 -0.000361591 -0.000990342 -0.00190731 

  K2 0.000429095 0.00116414 0.00223449 

  K3 -4.19E-05 -0.0001056 -0.000197237 

  K4 -0.000196219 -0.000530213 -0.00101625 

  K5 -1.26E-05 -3.86E-05 -7.71E-05 

  K6 0.000100611 0.000269127 0.000514011 

  K7 4.09E-05 0.000111725 0.000214943 

  K8 -4.71E-05 -0.000124638 -0.000237207 

  K9 -3.60E-05 -9.70E-05 -0.000185561 

  K10 3.84E-05 0.000101852 0.000193958 

  K11 -8.73E-06 -2.30E-05 -4.37E-05 

 

 
Table 3-2.  Polynomial fit coefficients for I1, I2, and I3 at 180mA and 8mA 
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Gaussian Fits for 180mA I1, I2, and I3      

Equation used:  y0+A0*exp(-(wave-1.2)^2/w0^2)+A1*exp(-(wave-1.14)^2/w1^2) 

  Coefficients 
180ma I1  
values 

180ma I2  
values 

180ma I3 
 values 

  y0 -7.86E-11 6.23E-11 1.52E-10 

  A0 3.25E-10 7.40E-10 1.71E-09 

  A1 2.67E-10 9.45E-10 2.66E-09 

  w0 0.136301 0.0761161 0.0522241 

  w1 0.0889164 0.0528127 0.0373727 

          

Gaussian Fits for 8mA I1, I2, and I3      

Equation used:  y0+A0*exp(-(wave-1.24)^2/w0^2)+A1*exp(-(wave-1.175)^2/w1^2) 

  Coefficients 
8ma I1 
values 8ma I2 values 8ma I3 values 

  y0 7.57E-12 7.91E-12 5.99E-12 

  A0 1.93E-10 3.30E-10 4.76E-10 

  A1 1.28E-10 1.51E-10 1.65E-10 

  w0 0.0426573 0.0437862 0.0434402 

  w1 0.0411964 0.0379459 0.0366956 

 

 
Table 3-3.  Gaussian fit coefficients for I1, I2, and I3  at 180mA and 8mA 
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Polynomial Fits for 180mA Gain and Spontaneous Spectra  

Equation used:  K0+K1x+K2x
2
…   

  Coefficients 
180ma G  
values 

180ma S 
values 

  K0 -1.68E+07 -0.00159392 

  K1 8.25E+07 0.00502039 

  K2 -1.68E+08 -0.00439033 

  K3 1.84E+08 -0.00090012 

  K4 -1.12E+08 0.00208136 

  K5 3.67E+07 0.000875023 

  K6 -5.00E+06 -0.000991724 

  K7   -0.000711185 

  K8   0.000797269 

  K9   -0.000186992 

        

Polynomial Fits for 8mA Gain and Spontaneous Spectra 

Equation used:  K0+K1x+K2x
2
…   

  Coefficients 
8ma G 
 values 

8ma S 
 values 

  K0 -1.98E+07 -0.00745238 

  K1 7.98E+07 0.0262674 

  K2 -1.28E+08 -0.029559 

  K3 1.03E+08 0.00315994 

  K4 -4.16E+07 0.014207 

  K5 6.69E+06 -0.00282305 

  K6   -0.00840134 

  K7   0.00571228 

  K8   -0.00111187 

 

 
Table 3-4.  Polynomial fit coefficients for gain and spontaneous spectra at 180mA and 

8mA
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3.7 Summary 

 

In this chapter a method for measuring SLD EL spectrums with many different 

possible configurations was discussed.  Each step was discussed more thoroughly and 

included technical testing details.  The simulation results confirm that with a longer 

cavity length the maximum bandwidth narrows.  A graph comparing power and 

bandwidth can be used to help find the optimum configuration of power and bandwidth.  

A comparison of the measured SLD EL spectrum with the simulated SLD EL spectrum 

shows that they are in good agreement, and confirms that the SLD equation is effective in 

predicting the SLD EL spectrum for p-doped quantum dot material.  The data obtained 

from the improved segmented contact method was curve fitted.  The predicted SLD EL 

spectrums with the best agreement to the actual SLD EL spectrum were calculated from 

polynomial fitted gain and spontaneous spectrums. 
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Chapter 4 - Summary and Future Work 

 

4.1 Summary  

 

This thesis was dedicated to the quantum dot multi-section SLD.  A SLD is 

typically an edge emitting device which has higher power than a typical LED and a 

broader bandwidth compared to a laser.  The SLD output is amplified spontaneous 

emission.  Superluminescent diodes are used in a variety of applications, however the 

multi-section SLD in this project is intended for OCT.  OCT requires broad bandwidth 

and high power.  The optimum center wavelength is different for each application.  For 

use on skin a wavelength of 1.2um is desirable.  One goal of this experiment was to 

achieve a SLD device with a wide bandwidth and a reasonable power.   While the SLD is 

not the only option for OCT, it is cheaper and simpler to use.  There are several different 

methods that are being used to create SLDs for OCT, however the multi-section SLD is 

unique in that it allows for the tuning of both the ground state and the excited state to 

achieve a wide bandwidth and a high power.  This is important because it allows more 

power and bandwidth to be extracted from a given quantum dot material than most other 

methods, and the output can easily be coupled in to a fiber. 

The multi-section SLD used in this project is composed of three regions, two gain 

sections and one absorber section.  The front gain section is pumped at a high current 

density to achieve excited state emission.  The second gain section is pumped with a 

lower current density to achieve ground state emission.  For optimum power, the front 

section is biased at the current density where power saturates.  The multi-section SLD EL 

spectrum can be simulated with an equation developed by Y. C. Xin.  One purpose of this 
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project was to verify that this equation works for non-traditional quantum dot SLD 

devices.  The equation requires gain, spontaneous emission, and lengths for each gain 

section.  With a multi-section SLD there are a number of possible configurations.  The 

SLD equation can simulate several configurations, and predict several optimum 

bandwidths with different cavity lengths and gain section length ratios.  This process 

saves time and reduces the amount of wear on the device from un-necessary testing.   

The gain is found using the improved segmented contact method, which is based 

off of the segmented contact method.  Unless there is a cumbersome slit placed in front of 

the emitting facet, the segmented contact method ignores the error produced by unguided 

spontaneous emission, and while this method works for quantum well devices, it is not 

sufficient for quantum dot devices.  Quantum dots active media have a much smaller 

optical gain and unguided spontaneous emission cannot be ignored.  The improved 

segmented contact method uses EL spectrums from three different lengths to subtract out 

the unguided spontaneous emission, resulting in a cleaner gain spectrum.  The pure 

spontaneous emission spectrum can be calculated from the same measured data used to 

calculate the gain. 

A SLD which has a peak wavelength of 1200nm, a power greater than 0.2mW, a 

bandwidth greater than 100nm, and a dip between the ground and excited state emission 

of less than 3dB was achieved.  This SLD device will work for OCT.  It was also verified 

that the SLD equation simulations were in good agreement with the actual data, showing 

that the equation used to describe the electroluminescence (EL) spectrum of the multi-

section SLD works when applied to different quantum dot material.    

 



 73 

4.2 Future Work        

 

The multi-section concept is being incorporated into a more complex SLD design, 

similar to the V-groove etched tapered waveguide device mentioned in Chapter 1.  This 

novel multi-contact device is being developed by Professor Hogg’s group at The 

University of Sheffield. They are achieving 2mW of power under CW conditions with a 

bandwidth of about 75nm.  The device emits at a peak wavelength of 1050nm, which is 

associated with zero dispersion in aqueous tissue such as the eye [1].  The front output 

facet is angled with respect to the facet normal.  The ridge is 7um wide and is divided in 

to 1mm electrically isolated sections.  The total device length is 10mm.  The 1mm long 

back section tapers into a 300um wide ridge, which is left un-pumped to act as an 

absorber.  The rear facet is a tilted deep v-groove etch facet. The active region consists of 

chirped quantum dots.       

 

 

 

Figure 4-1.  Multi-contact SLD with V-groove etch and tapered waveguide.  Each 

isolated section is 1mm long.  The total device length is 10mm. 
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